
Unit-Impulse  Function as  a  Limit Define  

gε(t ) =  

 
1/ ε for |t| <  ε/ 2 

 

0 othe rwise. 

The function gε has  a  plot of the  form shown below. 
 

gε (t) 

ε 
− 0 2 2 

ε t 

Clearly, for any choice  of ε , 
{ ∞  

−∞  gε(t)dt =  1.  

The function δ can be  obtained as  the  following limit: 

δ(t) =  lim gε(t ).  
ε→0 

That is , δ can be  viewed as  a  limiting case of a rectangular pulse where  

the  pulse  width becomes infinites imally small and the  pulse  height becomes 

infinite ly large  in such a  way that the  integral of the  resulting function 

remains  unity. 
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Properties  of the  Unit-Impulse  Function 

Equivalence proper ty. For any continuous  function x and any real 

constant t 0,  
 
 

x(t)δ(t − t0) =  x(t0)δ(t − t 0).  
 
 

Sifting proper ty. For any continuous  function x and any real constant t 0,  

 { ∞  
 

 
 

−∞  
x(t)δ(t − t0)dt =  x(t 0).  

The δ function also has  the  following properties : 
 
 

δ(t) =  δ(−t) and 

δ(at) =  1  δ(t ),  |a| 

where  a is  a  nonzero real constant. 
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Representing a  Rectangula r  Pulse  Us ing Unit-S tep Functions  
 
 

 

For real constants  a and b where  a ≤ b, consider a  function x of the  form 

x(t ) =  

 
1  if a ≤ t <  b 

 

0 otherwise  

(i.e., x(t) is  a  rectangular pulse of height one, with a  rising edge at a and 

falling edge at b ).  
 

The function x can be  equivalently written as  
 
 

x(t) =  u(t − a) − u(t − b) 
 
 

(i.e., the  difference  of two time-shifted unit-s tep functions ).  
 

Unlike  the  original express ion for x, this  la tter express ion for x does not 

involve multiple cases. 

In effect, by us ing unit-s tep functions, we have  collapsed a  formula  

involving multiple  cases  into a  s ingle  express ion. 
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Representing Functions  Us ing Unit-S tep Functions  

The idea  from the  previous  s lide  can be  extended to handle  any function 

that is  defined in a  piecewise manner (i.e., via  an express ion involving 

multiple  cases ).  
 

That is , by us ing unit-s tep functions, we can always  collapse  a  formula  

involving multiple  cases  into a  s ingle  express ion. 
 

Often, s implifying a  formula  in this  way can be  quite  beneficial. 
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Section 2.4 
 

 
 
 

Continuous -Time (CT) Sys tems  
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CT Sys tems  A system with input x and output y can be  described by the  equation 
 
 

y =  H { x },  
 

 

where  H denotes  an operator (i.e., transformation ).  

Note  that the  operator H maps a function to a function (not a  number to 

a  number ).  
 

Alternatively, we can express  the  above rela tionship us ing the  notation 

x −→ y. 
 

If clear from the  context, the  operator H is  often omitted, yielding the  

abbreviated notation 

H 

x → y. 
 

Note  that the  symbols  “→” and “=” have  very different meanings.  The  

symbol “→” should be  read as  “produces” (not as  “equ als .)”      
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Block Diagram Representa t ions  

Often, a  sys tem defined by the  operator H and having the  input x and 

output y is  represented in the  form of a  block diagram as  shown below. 
 
 

Input Output 

Sys tem 

H 

x(t) y(t) 
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Inte rconnection of Sys tems  Two basic ways in which sys tems can be  interconnected are  shown below. 

Sys tem 1 

H1 

Sys tem 2 

H2 

y(t) x(t) 

Series  

Sys tem 1 

H1 

Sys tem 2 

H2 

+ 

x(t) y(t) 

Paralle l 

A ser ies (or cascade) connection ties  the  output of one  sys tem to the  input of 

the  other. 

The  overall series-connected sys tem is  described by the  equation 
 

y =  H2 
 
H1{ x }

  
.  

 

A parallel connection ties  the  inputs  of both sys tems together and sums 

their outputs . 

The  overall paralle l-connected sys tem is  described by the  equation 
 

y =  H1{ x}  +  H2 { x }.  
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Section 2.5 
 

 
 
 

Properties  of (CT) Sys tems  
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Memory and Causa lity 

A system with input x and output y is  said to have  memory if, for any real 

t0, y(t0) depends  on x(t) for some t j=  t0. 

A system that does  not have  memory is  said to be  memoryless. 

Although s imple, a  memoryless  sys tem is  not very flexible, s ince  its  

current output value  cannot re ly on pas t or future  values  of the  input. 
 

A system with input x and output y is  said to be  causal if, for every real t0, 

y(t0) does  not depend on x(t) for some t >  t0. 
 

If the  independent variable  t represents  time, a  sys tem must be  causal in 

order to be  physically realizable. 
 

Noncausal sys tems can sometimes  be  useful in practice, however, s ince  the  

independent variable  need not always represent time. For example, in some 

s ituations, the  independent variable  might represent position. 
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Invertibility The inverse of a  sys tem H is  another sys tem H −1 such that the  

combined effect of H cascaded with H −1 is  a  sys tem where  the  input 

and output are  equal. 

A sys tem is  said to be  inver tible if it has  a  corresponding inverse  sys tem 

(i.e., its  inverse  exis ts ). 

Equivalently, a  sys tem is  invertible  if its  input x can always  be  uniquely 

determined from its  output y. 

Note  that the  invertibility of a  sys tem (which involves  mappings  between 

functions) and the  invertibility of a  function (which involves  mappings  

between numbers) are  fundamentally different things. 

An invertible  sys tem will a lways  produce  distinct outputs from any two 

distinct inputs. 

To show that a  sys tem is  invertible, we s imply find the  inverse system. To 

show that a  sys tem is  not invertible, we find two distinct inputs that 

result in identical outputs. 

In practical terms, invertible  sys tems are  “nice” in the  sense  that their 

effects can be undone. 
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Bounded-Input Bounded-Output (BIBO) S tability 

A system with input x and output y is  BIBO stable if, for every bounded x, y 

is  bounded (i.e., |x(t)| <  ∞ for a ll t implies  that |y(t)| <  ∞ for a ll t). 
 

To show that a  sys tem is  BIBO stable, we  must show that every bounded 

input leads  to a  bounded output. 
 

To show that a  sys tem is  not BIBO stable, we only need to find a  s ingle  

bounded input that leads  to an unbounded output. 

In practical terms, a  BIBO s table  sys tem is  well behaved in the  sense  that, 

as  long as  the  sys tem input remains  finite  for a ll time, the  output will a lso 

remain finite  for a ll time. 
 

Usually, a  sys tem that is  not BIBO s table  will have  serious safety issues. 

For example, an iPod with a  battery input of 3.7 volts  and headset output of 

∞ volts  would result in one  vaporized Apple  cus tomer and one  big lawsuit. 
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Time Invariance  (TI) 
A system H is  said to be  time invar iant (TI) if, for every function x and 

every real number t0, the  following condition holds : 

y(t − t0) =  H x′(t) where  y =  H x and x′(t) =  x(t − t0) 

(i.e., H commutes with time shifts). 
 

In other words, a  sys tem is  time invariant if a  time shift (i.e., advance  or 

delay) in the  input a lways  results  only in an identical time shift in the  

output. 
 

A system that is  not time invariant is  said to be  time varying. 
 

In s imple  terms, a  time invariant sys tem is  a  sys tem whose  behavior does 

not change with respect to time. 
 

Practically speaking, compared to time-varying sys tems, time-invariant 

sys tems are  much easier to design and analyze, s ince  their behavior 

does  not change with respect to time. 
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Additivity, Homogene ity, and Linearity A system H is  said to be  additive if, for a ll functions  x1  and x2, the  

following condition holds : 
 

H (x1 +  x2) =  H x1 +  H x2 

(i.e., H commutes with sums ).  

A sys tem H is  said to be  homogeneous if, for every function x and every 

complex constant a, the  following condition holds : 

H (ax) =  aH x 

(i.e., H commutes with multiplication by a constant ).  

A sys tem that is  both additive  and homogeneous  is  said to be  linear . 

In other words, a  sys tem H is  linear, if for a ll functions  x1 and x2  and all 

complex constants  a1  and a2, the  following condition holds : 

H (a1x1 +  a2x2) =  a1H x1 +  a2H x2 

(i.e., H commutes with linear combinations ).  

The  linearity property is  a lso referred to as  the  superposition property. 

Practically speaking, linear sys tems are  much easier to design and 

analyze than nonlinear sys tems . 
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Part 3 
 

 
 
 

Continuous -Time Linear Time-Invariant (LTI) Sys tems  
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